Resurgence of the Euler-MacLaurin summation formula
نویسندگان
چکیده
Abstract. The Euler-MacLaurin summation formula relates a sum of a function to a corresponding integral, with a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Plana) prove that the asymptotic expansion is a Borel summable series, and give an exact Euler-MacLaurin summation formula. Using a mild resurgence hypothesis for the function to be summed, we give a Borel summable transseries expression for the remainder term, as well as a Laplace integral formula, with an explicit integrand which is a resurgent function itself. In particular, our summation formula allows for resurgent functions with singularities in the vertical strip containing the summation interval. Finally, we give two applications of our results. One concerns the construction of solutions of linear difference equations with a small parameter. And another concerns the problem of proving resurgence of formal power series associated to knotted objects.
منابع مشابه
The Euler-Maclaurin Formula and Sums of Powers Revisited
Using the Euler-Maclaurin summation formula the strictly increasing convergence lim m → ∞ m j=1 j m m = e e − 1 is demonstrated.
متن کاملEuler–Maclaurin summation and Schlömilch series
A method for analysing a class of divergent series is developed from the Euler– Maclaurin summation formula. The conditions that the summand must satisfy are explored, and a significant simplification is obtained for cases where the summation ranges over all integers. As an example, we consider the Ewald representation for Schlömilch series, and show that this includes Twersky’s dual series for...
متن کاملAnalogues of Euler and Poisson summation formulae
Abstract. Euler–Maclaurin and Poisson analogues of the summations ∑a<n≤b χ(n) f (n), ∑a<n≤b d(n) f (n), ∑a<n≤b d(n)χ(n) f (n) have been obtained in a unified manner, where (χ(n)) is a periodic complex sequence; d(n) is the divisor function and f (x) is a sufficiently smooth function on [a,b]. We also state a generalised Abel’s summation formula, generalised Euler’s summation formula and Euler’s...
متن کاملNotes on Euler-boole Summation
We study a connection between Euler-MacLaurin Summation and Boole Summation suggested in an AMM note from 1960, which explains them as two cases in a general approach to approximation that also encompasses Taylor sums. Here we give additional details of the construction.
متن کاملOn Reciprocity Formulas for Apostol’s Dedekind Sums and Their Analogues
Using the Euler-MacLaurin summation formula, we give alternative proofs for the reciprocity formulas of Apostol’s Dedekind sums and generalized Hardy-Berndt sums s3,p(b, c) and s4,p(b, c). We also obtain an integral representation for each sum.
متن کامل